extremal monomorphism - significado y definición. Qué es extremal monomorphism
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es extremal monomorphism - definición

INJECTIVE HOMOMORPHISM (NOT NECESSARILY RIGHT-TOTAL)
Monic morphism; Extremal monomorphism; Regular monomorphism; Strong monomorphism; Draft:Strong monomorphism; Monomorphisms
  • thumb

Epoch of Extreme Inundations         
HYPOTHETICAL EPOCH
User:Andreygeo/Epoch of Extremal Inundations; Epoch of Extremal Inundations
The Epoch of Extreme Inundations (EEI) is a hypothetical epoch during which four landforms in the Pontic–Caspian steppe—marine lowlands (marine transgressions), river valleys (outburst floods), marine transgressions (thermocarst lakes) and slopes (solifluction flows)—were widely inundated.The dynamics of landscape components and inner marine basins of Northern Eurasia over the past 130,000 years.
Extremal combinatorics         
STUDY OF MAXIMUM OR MINIMUM SIZE OF A SET UNDER GIVEN CONDITIONS
Extremal set theory
Extremal combinatorics is a field of combinatorics, which is itself a part of mathematics. Extremal combinatorics studies how large or how small a collection of finite objects (numbers, graphs, vectors, sets, etc.
Extremal graph theory         
  • The edges between parts in a regular partition behave in a "random-like" fashion.
  • The [[Petersen graph]] has chromatic number 3.
Extremal graph
Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local substructure.

Wikipedia

Monomorphism

In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation X Y {\displaystyle X\hookrightarrow Y} .

In the more general setting of category theory, a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism. That is, an arrow f : XY such that for all objects Z and all morphisms g1, g2: ZX,

f g 1 = f g 2 g 1 = g 2 . {\displaystyle f\circ g_{1}=f\circ g_{2}\implies g_{1}=g_{2}.}

Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below.

In the setting of posets intersections are idempotent: the intersection of anything with itself is itself. Monomorphisms generalize this property to arbitrary categories. A morphism is a monomorphism if it is idempotent with respect to pullbacks.

The categorical dual of a monomorphism is an epimorphism, that is, a monomorphism in a category C is an epimorphism in the dual category Cop. Every section is a monomorphism, and every retraction is an epimorphism.